Chemistry at Illinois University of Illinois at Urbana-Champaign

Alison R. Fout

Assistant Professor of Chemistry

Professor Fout received her undergraduate degree in chemistry from Gannon University in 2002 and a M.S. from the University of North Carolina at Charlotte in 2004.  In 2009 she received her Ph.D. from Indiana University and was the 2010 recipient of the American Chemical Society Division of Inorganic Chemistry Young Investigator Award for her research at Indiana.  From 2009-2012 she was both a Mary Fieser and NIH Postdoctoral Fellow at Harvard University.  Alison joined the faculty at the University of Illinois at Urbana-Champaign in 2012. 


The Fout research program focuses on the synthesis of ligand architectures that can support transition metal complexes capable of mediating unusual transformations for biological, environmental and energy problems. Our main curiosities stem from catalytic, synthetic inorganic, and bioinorganic chemistry. The group is interested in using synthesis, reactivity, and mechanistic studies to understand the activation of small molecules by low-coordinate transition metal-ligand multiple bonds.

BioinorganicWe are interested in developing synthetic systems containing structural and functional motifs found within the particular architecture of metalloproteins.  Our approach to facilitate multi-electron transformations is to use a ligand scaffold with two key features: 1) a hydrogen-bonding network to stabilize reactive intermediates and channel substrates toward the metal center; 2) a redox active phenol or tyrosine. The design of new synthetic systems that are tailored to particular functions will provide insight into the reactivity of targeted metalloproteins.

Synthetic Inorganic and Catalysis: First-row transition metals are more abundant, less toxic and more cost efficient than the second and third-row congeners.  We are interested in using first-row transition metal complexes in both stoichiometric and catalytic transformations to effect the reactive scope currently observed by their heavier counterparts. Using strong-field ligands facilitates desired chemical reactivity by suppressing one electron pathways, resulting in new catalysts for two electron bond-making and bond-breaking processes, e.g. oxidative addition and reductive elimination. Iron, cobalt and nickel catalysts are primary targets for their ability to parallel second and third-row transition metal catalysts.  A related topic of interest involves using sterically encumbering ligands to target high-valent coordinatively unsaturated metal complexes for the intermolecular C-H bond activation of alkenes or arenes. 

Students in the group will develop a strong foundation in synthetic organometallic chemistry while developing familiarity with spectroscopic techniques including multinuclear NMR, electron paramagnetic resonance, magnetometry, X-ray crystallography, IR, UV-vis, Mössbauer, and electrochemistry.


Facile Nitrite Reduction in a Non-heme Iron System: Formation of an Iron(III)-Oxo.Ellen M. Matson, Yun Ji Park, and Alison R. Fout Journal of the American Chemical Society 2014, 17398–17401.

Meridional vs. facial coordination geometries of a dipodal ligand framework featuring a secondary coordination sphere.Ellen M. Matson, Zachary Gordon, Benjamin Lin, Mark J. Nilges and Alison R. Fout Dalton Transactions 2014, 16992-16995.

Nickel(II) Pincer Carbene Complexes: Oxidative Addition of an Aryl C−H Bond to Form a Ni(II) Hydride Matson, E. M.; Martinez, G. E.; Ibrahim, A. D.; Jackson, B. J.; Bertke, J. A.; Fout, A. R. Organometallics 2014, ASAP.

A Synthetic and Mechanistic Investigation into the Cobalt(I) Catalyzed Amination of Aryl Halides Brennan, M. R.; Kim, D.; Fout, A. R. Chem. Sci. 2014, 5, 4831-4839.

Isolation of Iron(II) Aqua and Hydroxyl Complexes Featuring a Tripodal H-bond Donor and Acceptor Ligand Matson, E. M.; Bertke, J. A.; Fout, A. R. Inorg. Chem. 2014, 53, 4450-4458.

Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters. Powers, T. M.; Gu, N. X.; Fout, A. R.; Alfonso, D. M.; Chen, Y.-S.; Zheng, S.-L.; Betley, T. A. J. Am. Chem. Soc. 2013, 135, 1448-14458.

Understanding intermolecular C−F bond activation by a transient titanium neopentylidyne: experimental and theoretical studies on the competition between 1,2-CF bond addition and [2+2]-cycloadditon/β-fluoride elimination. Fan, H.; Fout, A. R.; Bailey, B. C.; Pink, M.; Baik, M.-H.; Mindiola, D. J. Dalton Trans. 2013, 42, 4163-4174.

Trigonal Mn3 and Co3 Clusters Supported by Weak-Field Ligands: A Structural, Spectroscopic, Magnetic and Computational Investigation into the Correlation of Molecular and Electronic Structure. Fout, A. R.; Xiao, D. J.; Zhao, Q.; Harris, T. D.; King, E. R.; Eames, E. V.; Zheng, S.-L.; Betley, T. A. Inorg. Chem. 2012, 51, 10290-10299.



2015 Marion Milligan Mason Award for Women in the Chemical Sciences (AAAS)

2014 NSF Faculty Early Career Development (CAREER) Award

2010 American Chemical Society Division of Inorganic Chemistry Young Investigators Award

2010-2012 NIH Postdoctoral Fellow

2009 Mary Fieser Postdoctoral Fellowship, Harvard University

2008 Felix Haurowitz Award, Indiana University

2008 College of Arts and Sciences Dissertation Year Research Fellowship, Indiana University

2008 Bernice Eastwood Covalt Memorial Scholarship, Indiana University

2008 James H. Coon Sciences Prize, Indiana University

2005 E. Campaigne C500 Award, Indiana University


coming soon


coming soon
Photo of Benjamin J. McCall